AnyTrading - ビットコイン投資を強化学習で実行 ACKTR編(4番目)

AnyTrading - ビットコイン投資を強化学習で実行 ACKTR編(4番目)

12月05日の記事にてアルゴリズムACKTRで新たにビットコインの学習済みモデルを10種類作成しました。

そのうちの4番目の学習済みモデルに対して、50回連続で投資検証を行います。

一度に全期間の投資結果を確認します。処理内容はソースをご確認下さい。

ソース

ソースは下記の通りです。

[ソース]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os, gym
import datetime
import gym_anytrading
import matplotlib.pyplot as plt
from gym_anytrading.envs import TradingEnv, ForexEnv, StocksEnv, Actions, Positions
from gym_anytrading.datasets import FOREX_EURUSD_1H_ASK, STOCKS_GOOGL
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import PPO2
from stable_baselines import ACKTR
from stable_baselines.bench import Monitor
from stable_baselines.common import set_global_seeds

import numpy as np
import matplotlib.pyplot as plt

def simulation(i, prm):
global means
# ログフォルダの生成
log_dir = './logs/'
os.makedirs(log_dir, exist_ok=True)
# 環境の生成
env = gym.make('forex-v0', frame_bound=(prm['start_idx'],
prm['end_idx']),
window_size = prm['window_size'])
env = Monitor(env, log_dir, allow_early_resets=True)
# シードの指定
env.seed(0)
set_global_seeds(0)
# ベクトル化環境の生成
env = DummyVecEnv([lambda: env])
# モデルの読み込み
# model = PPO2.load('model{}'.format(i))
model = ACKTR.load('model{}'.format(i))
# モデルのテスト
env = gym.make('forex-v0', frame_bound=(prm['start_idx'] + prm['move_idx'],
prm['end_idx'] + prm['move_idx']),
window_size = prm['window_size'])
env.seed(0)
state = env.reset()
while True:
# 行動の取得
action, _ = model.predict(state) # 0 or 1
# 1ステップ実行
state, reward, done, info = env.step(action)
# エピソード完了
if done:
print('info:', info, info['total_reward'])
means.append(info['total_reward'])
break
# グラフのプロット
plt.cla()
env.render_all()

for move_idx in range(0, 1201, 50):
labels = []
means = []
prm = {'window_size': 10, #window_size 参照すべき直前のデータ数
'start_idx' : 10, #start_idx 学習データの開始位置
'end_idx' : 110, #end_idx 学習データの終了位置
'move_idx' : move_idx} #学習データからの移動分。移動したものを検証データとする。
for i in range(50):
labels.append('{}'.format(i))
simulation(4, prm)

x = np.arange(len(labels))
width = 0.35

fig, ax = plt.subplots()

rect = ax.bar(x, means, width)
ax.set_xticks(x)
ax.set_xticklabels(labels)

plt.savefig('trading{:03d}.png'.format(move_idx))

実行結果

実行結果は次のようになりました。

0日移動 50日移動
100日移動 150日移動
200日移動 250日移動
300日移動 350日移動
400日移動 450日移動
500日移動 550日移動
600日移動 650日移動
700日移動 750日移動
800日移動 850日移動
900日移動 950日移動
1000日移動 1050日移動
1100日移動 1150日移動
1200日移動  

勝敗を集計しますと15勝7敗2分となりました。

昨日の結果を超えてまた過去最高勝率となりました。

この程度の勝率があれば、実運用候補にしてもよいのかもしれません。

次回は別の学習済みモデルを検証していきます。


Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×